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Preface

This text is intended for a one-semester course in the eedafl functions of sereval
variables and vector analysis with special emphasise ditagipns in electromagnetic
field theory. Since the subject of this course is a well eithbtl domain in mathemat-
ics, there exists a huge amount of textbooks as for examplgZJl [3] and [4] to
mention only some of them. To get really familiar with thedielf vector analysis the
student is encouraged to extend his studies beyond thiststar



Chapter 1

The geometry of euclidean space

1.1 Vectors in three-dimensional space

To illustrate the vector concept we will first consider a wediven in a plane and
represent it with the help of cartesian coordinates as shovagure 1.1 The vector

Y A

Figure 1.1: Vector in a plane, represented in cartesiandioates

V is denoted by a set of two ordered numerbers itheing the x- and being the
y-component of the vector.
a
-(5)

As illustrated in Figure 1.2 a vector or a point in three digienal space may be
represented as a ordered triple of real numbers.

In this ordera stands for the x-b for the y- andc for the z-component of the vector.
To distinct the different dimensions of a real space, we wg# the following notations:

e One dimensional space, a line, is denotedrBy
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Figure 1.2: Vector in a three dimensional space, repredénteartesian coordinates

¢ Two dimensional space, a plane, is denote®By
¢ Three dimensional space, is denotedby

The extension of the notation to spaces with arbitrary dsieers is straight forward.

1.1.1 Simple vector operations

Considered a vector as a mathematical object differentadip@ass on this objects may
be defined. These defintions are motivated to give meaningfsuilts when applied
two physical objects like, velocities or forces, which atemaly represented by vec-
tors.

Addition of vectors

Suppose there are defined two vectdrand b and they are given in their cartesian
representation.

ay B by
d=1{ a b=| by
az b,

Then the resulg of an addition of the two vectors is defined by

B ay + by
6:a+b = C= ay+by
az+b;

In Figure 1.3 the addition of two vectors is illustrated. yivee two vectors describing
the movement of e.g. an object in two dimensional space,dts¢ inovement de-
scribed by the vectdt is given by the two subsequent displacements describedeby th
vectorsd andb independent of the fact which of them is done first. This fa¢ermed
commutativity of the operation.



Figure 1.3: Addition of vectors

Multiplication by a scalar

There are a number of product operations that can be defineddtors. The simplest
operation is the multiplication of a vectdby a real numbem € RL. This operation is
denoted as scalar multiplication and the definition reads

GVX VX
C=aV = C=| avy V=1 w
av, Vs

To illustrate the geometric meaning of the scalar multgtien Figure 1.4 shows a
vectorV and the result vectds for the special case af > 1. In this case the resulting
vectorc has the same direction but is longer then the original vetitdhe casex < 0
the resulting vector would have the opposite direction.

avwitha > 1

Figure 1.4: Multiplication of a vector by a scalar

Subtraction of vectors

With the help of the last operation the subtration of vectans be reduced to a scalar
multiplication witha = —1 and a subsequent addition of these vectors.

—by

c—d-b=a+(-1-b)=4a+b, with by=| —by
—h,



Figure 1.5 shows an example for the subtraction of two dinoeas vectors.

Figure 1.5: Subtraction of vectors

Standard basis vectors in B

We define the following standard basis vectors

1 0 0
b=[0] w=(1] w=|o0 (1.1)
0 0 1

With the help of vector addition and scalar multiplicatiave find that any arbitrary
vectorv = (v, Wy, Vz) may be expressed by a weighted sum of the standart basissecto

V = qux + Vyuy + VzDz

1.1.2 The inner product

The inner product of two vectoid = (ax, ay, a;) andb = (bx, by, b;), somtimes also
denoted ascalar product or dot productis defined by a operation on its components

With the help of the definition of the dot product one can shbat tthe following
relations hold true
d8-d>0
da-d=0 ifandonlyif a=0
(ad)-b = a(a-b) (1.3)
- (Bb) = B(a-b)
d-b=>b-a

The norm or length of a vector is defined by

& =va-a=/a2+a2+a2



A unit vectord, is a vector with norm unity. It can always be constructed feowector
awith non zero length.

We will now show that the following relation for the inner phact holds also true
a-b = |a|/b|cog6) (1.4)

Fordandb being to arbitrarty vectors iR3 ande being the angle between the two vec-
tors with 0< 8 < 1. To proof this relation we apply the law of cosines from trigmn-
etry to the triangle spanned by the two vect@rb and shown in Figure 1.6.

Figure 1.6: Triangle spanned by two vectors

b—&% = |&® + [b” — 2/a][b|cog6)
Since|b— &2=(b— &) - (b— &) we can rewrite the above equation as:

(b—a)-(b—&) =a-a+b-b—2b-a

Comparing the above results proofs equation 1.4. Sincebb@ate value of the cosine
function is always lower equal one the so cal@auchy-Schwarz Inequalityfollows
directly from equation 1.4. B B

|a-b| < |&][b]

1.1.3 The cross product

In the last section we discussed the dot product of two veetbich results in a scalar
value. In this section we will define the cross product whighkdame times also called
thevector product, since it produces a vector as its result. To illustrate hoerloas to
construct the result vector consider Figure 1.7. Therelawe/s two arbitrary vectors
a andb, which define a plane in the three dimensional space. Thetitireof the
vector to be constructed is normal to the plane spanned kiytheectors, whereas its
absolute value is equal to the area of the spanned parabeodNormally there exist
always two vectors that are normal to a plane. In the crosdymtdhe normal direction
U, has to be choosen, which gives the direction of a right tgrsicrew, if the vector
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Figure 1.7: Geometry to define the result vector of the crosdyrct

3 is turned into the vecto using the smallest angle This results in the following
definition B
¢ = |&|b|sin(y)tn

As a consequence of this definition, the following equatiotuf true
axb=-bxa
and hence we have
dxd=-dxda=0

With the help of the above definition, one can also easily fttufollowing algebraic
properties of the cross product:

ax (ab+ Be) = a(@x b) + P(ax )

(0@ + Bb) x & = a(@x ) + B(bx T)

For the standard base vectors defined in 1.1 we find the failpwasults for their cross
products

Uy x Uy="U;

Uy x Uz =Uyx

Uy x Ux="Uy
One can also determine the cross product of two vectors bypslrally equating the
value of the following determinant

UX Uy UZ
ax ay az
bx by b,

l_jx(aybz — azby) — l_jy(axbz — asz) + l_jz(axby - aybx)

where we have done a determinant expansion by minors ovéirsheow.

axb=




1.2 n-Dimensional Euclidian space

In the previous section we defined vectors and operationbesetvectors in a three
dimensional euclidean space. To generalize the concepidifiean space to an ar-
bitrary order of dimensions we define vectors in this space bgt of n ordered real
numbers.
a1
Y]
3=

an
We launch our study of euclidean n-space by introducingradadgebraic operations

analogous to those allready defined’if We define the addition of two vectors by the
addition of their components.

ag+b

B az+ by
C=da+b= .

an+bn

In the same way we define the multiplication by a scalar.

aan

One can also easily define a set of standard basis vectB's in

1 0 0
0 1 0
U, = ) Uy = ) ce O = )
0 0 1

Any vectord can be written as weighted sum of the standard basis vectors.
a = aly + apllip + - - +anln

Since the dot or inner product in 3-dimensional space (1&2) aliready defined using
the components of the vectors the generalization of thisatjpe to n-dimensional
space is straigtht forward.

a-b=ab; + ahy + - - +anby

With the help of the dot product, one can easily extend theepnhof the norm or
length of a vector to n-dimensional space.

|a =vd-d= /a2 +ai+ - +a2



As a consequence the cosine of the afdletween two vectors in n-dimensional space
is given by:

cogb) = 3_&3 (1.5)

&b

Since there is really no difference considering the dot pebvéh 3- or n-dimensional
space the equations 1.3 hold also true for vectors in spdegbitrary dimensions. We
remark that there iso cross productdefined orR™ except for n = 3. Itis only the dot
product that generalizes to n-dimensional space.

1.3 Linear mapping in Euclidean space

In order to describe a linear mapping of arbitrary vectobging elements adR" onto
a spaceR™ with elementsy we define a matrix as a 2-dimensional entitynof< n
ordered real numbers, whereas m counts the number of rows emdgnts the number
of columns of the matrix.

a1 ai2---ain

A2  agz---agn
A= . ) .

ami  @m---8mn
The linear mapping — ¥ is then described by the following operation on the compo-
nent values of the vectét

n
Y= akx with i€ (1..-m)
k=1

One speaks of multiplying the vect®mwith the matrixA and uses the following short
term notation.
y = AX

It is natural to define the addition and the subtraction of maairices of same dimen-
sion m x n by the addition and subtraction of the single components el ag the
multiplication of a matrix by a scalar. As consequence ofdbeve definitions the
equations of linearity hold true.

A(X+Y)=AX+ Ay
A(oX) = a(AX)



Chapter 2

Differentiation

In this chapter we will extend the principles of differehtalculus for functions of
one variable to functions of several variables, restrgctnrself first to so calledeal-
valued functions. In ordinary differential calculus only functions of oneriable are
considered, which is normaly denotedhyor examplef (x) = x2. From a geometrical
point of view, this function mapsz being an element dk* onto f (x) which is also an
element oR? or in a mathematical short term notation we have

fx)=x* : R!'—R!

In the following chapter we will consider functions that deke a mapping e.g. from
2-dimensional spacg,y) € R? or 3-dimensional spade,y,z) € R® onto a real value
being an element oR!. As variables we consider the ordered gety) or (x,y,2)
describing an arbitrary point in a cartesian coordinatéesys

f(x,y) : R2—R!
f(x,y,2 : R®—R!

As a first example of a real-valued function we will consider potential function of
a charge located in the center of a cartesian coordinate system.

oxy.2) = 0 ___1

From a mathematical point of view we have a function that rrapghly speakindR®
ontoR?. This is true for almost all points of the® execept the point0,0,0), since
for this point the output of the function is not defined. THere the function is only
defined on a domai® being subset oR3, or written in a mathematical short term
notation.

. v
with & — 1,256 1012H‘:’] 2.1)

9o(x,y,2) : D cR® — R!?

To become familiar with expression like equation 2.1 onetoato visualize them. We
will discuss this in more detail in the next section.

2.1 Visualization of real-valued functions

Normally if we consider for example the simple functibfx) = x*> we remember the
picture shown in Figure 2.1. But is this picture identicattwtihe function? Of course
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y-axes

Figure 2.1: Graph of a simple function

not, since its only a representation of the function on a dedndomain or in other
words Figure 2.1 tries only to visualize the function. Thadtion itself is a mapping
from R! to R! and from this operation it is hard to draw a picture. The pieshown
in Figure 2.1 is a curve ilR? and to distinguish it from the function itself it is called
thegraph of the function. Whereas the function itself is a mappingrfie® to R* the
graph of the function is a mapping froRT to R2. In symbols, we write this as

graphf = {(x, f(x)) € R xe D c R}

where the curly braces meapt of alland the vertical bar is reaglich that Drawing
the graph of a function of one variable is a useful method4oaafize how the function
actually behaves. We will generalize the idea of a graph abvalued functions of
several variables.

Definition
Let f : D c R" — R, we define the graph df to be the subset d&®"** consisting of
all points(xg,Xa. .., Xn, f(X1,X2,...,%n)) € R for (xg,X2...,%,) € D.

For the cas@ = 1 the graph is a kurve iR?, while forn =2 it is a surface irR®. For
n = 3 the graph of a function is no longer visuable since it wolddatB-dimensional
object in 4-dimensional space.

Example: As a first example Figure 2.2 shows the graph of the funcfipgy) =
x? +y2, which is a paraboloid in 3-dimensional space.

Example: As a second example we will have a view on the graph of thetfoimc
f(x,y) = x> — y?, which is shown in Figure 2.3 and looks like a saddle.

10
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Another possibility to visualize a function is the so calledel set. A level set of a
function is defined as that subset in the source domain faztwihie function produces
a constant output. If we again consider the functigr,y) = x* 4+ y? a level set in
the source domaiR? is defined byx? +y? = c. As one knows these level curves are
defined by all possible concentric circles in the plane. lguFé 2.2 the level curves
are allready shown in the xy-plane, which is the source domfthe functionf (x,y).
Now after we have a crude unterstanding of a level set, we ldeeta give an exact
definition.

Definition: Let f(X): D € R" — R and letc € R. The level set of value is de-
fined to be those pointée D at which f (X) = c. If n= 2, we speak of a level curve
and if n = 3 we speak of a level surface. In a mathematical notationabe ket of
valuec is written as.

{XeD|f(X)=c} Cc R"

2.2 Limits and continuity

In this section we will develop the terminology that will pals to study the differenti-
ation of functions of several variables. We will introdube toncepts of the following
terms:

e open disk,
e open sets,
e limits,

e continuity.

We will start our discussion with the definition of an operkdis

Definition: LetX € R" and letr be a positive real number. The open disk (or open ball)
of radius r and center & is defined to be the set of all poirtsuch thaix—Xo| < r.
This set is denoteB, (Xp).

Notice that we include only thoséfor which thestrict inequality holds. The disk
Dr(R) is illustrated in Figure 2.4 fon = 1,2. For the casa = 1 andxp € R%, the open
disk Dy (x) is the open intervalxo —r,xg+r). For the case =2, %X € R?, the open
disk is theinsideof the disk with radius centered aX,. For the case = 3, % € R3,
Dy (X) is theinside of the ball of radius r centered &. With the help of the above
definition we are ready to define an open set.

Definition: Let U € R" (that is letU be a subset oR"). We callU an open set
when for every poink there exists some> 0 such thab; (Xp) is contained withirJ.

Intuitively speaking, a sét) is open, when the boundary points dfdo not lie in
u.

Theorem: For each®y € R" andr > 0, D;(Xp) is an open set.

12
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Figure 2.4: Open disk in 1,2-dimensional space

Proof: LetX € D;(Xp), that is let|X— Xo| < r. According to the definition of an open
set we must find @ > 0 such thaDs(X) C D;(Xp). Refering to Figure 2.4 we see that
s=r— |X—Xo| is a reasonable choise. Note tlsdt always greater than zero, but it
becomes smaller ¥ is nearer the edge @, (X). To proof thatDs(X) € Dy (%) we
consider & € Dg(X); that is|y —X| < s, hence we have:

[y =%o| = [(Y=R) + (R=%0)| < |(y=X)| + [(X=%0)| < S+ [X=%o| =
Definition: A neighborhood ok € R" is an open sdfl containing the poink.

Definition: Let Ac R". A pointX € R" is called a boundary point oA if every
neighborhood ok contains at least one point &and at least one point not i

With the above given definitions we are now ready to define ith& process in n-
dimensional space.

Definition: Let f : AC R" — R™, where A is an open set. LE§ € A or be a boundary
point of A, and letN be a neighborhood df e R™. We sayf is eventually inN asX
approacheg if there exits a neighborhoddl of Xy such thak # Xp, X € U, andx € A
imply f(X) € N.

We sayf (X) approacheb asx approacheg, or in symbols.

lim #(%) = B

To carry out pratical computations with limits we requirersadditional rules which
are given without proof.

Uniqueness of limits

If lim f(X) =b; and Ilimf(X) =b, then by =b;
X—¥Xo X—Xo

Letf:ACR"— R™ g:Ac R" — R™andXp be inA or a boundary point of and

13



b e R™ andc € R then the following theorems hold true:

If lim g_x, f(X) = bthan limg_g, cf(X) = cb
If limy_%, f(X) = by and lim_3,d(X) = by then lim_x, (F(X) +d(%)) = b1+ b,

If m=1 limg_, f(%) = by and nmmog( ) = cby
f(%)- =

then limg_x, (f(X) - 9(X))

Ifm=1 limyg_ 3 f(X) = b# 0andf(X) # OforallX € Athen lim_5,1/f = 1/b

a
by -

If f(X) = (f1(%),... fm(X)) wherefi : A RLi=1,....m,
are the component functions bf then lim_5, F(X) =b= (ba,...,bm)if and only if
limg_x, fi(X) = bjforeachi=1,...,m
(2.2)
With the help of the limit process, we are now able to definecthinuity of a func-
tion.

Definition: Let f : AC R" — R™M be a given vector valued function with domain
LetXp € A. We sayf is continous aky if and only if

-

lim £(%) = f(%)

If we just say thaff is continous, we shall mean théis continous at each poiRg of
A. Since the continuity of a function is defined by the limit pess there exist equations
equivalent to 2.2 for the continuity of functions.

2.3 Differentiation of functions

Intuitively, we know from our work in the last section that@ntinous function is one
that has no breaks in its graph. A differentiable functimmiR? to R* ought to be

such that not only there are no breaks in its graph, but tleegeviell defined plane
tangent to the graph at each point. Thus, there must not belerp fold, corners, or
peaks in the graph. In other words the graph must be smooth.

Before we can define the differentiability of a real valueddtion f (x,...,X,) at
the pointX = (x1,...,X,) we will indroduce the notion of thpartial derivate To do
this we will first have a look at the term of differentiability one dimensional calcu-
lus. Figure 2.5 shows the graph of a one dimensional reabdafunction. The term
differentiability of the function is connected with the geetric problem to construct a
tangent to the graph at a given poinas shown in the Figure. This is done by calcu-
lating the value of the function at two slightly differentipts x+ h andx, and dividing
the difference of the function values by the difference efvhariables. Introducing the
limit process liny_,o yields the known definition for the differentiation of a oneneén-
sional function.

df(x) .
dx r|1|Lno

f(x+h)—f(x)
h

14
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h X

Figure 2.5: Solving the tangent problem

With the help of this repeatation one can do the definitiorhefgartial derivative.

Definition Let f : U ¢ R" — R be a real valued function of n variables. Then the
partial derivative® f /0x; with respect to the i-th variable is defined by
of (X Fhy o xe) = F(Xa, Xy, Xn)
— = lim
0% h—0 h
From the above definition it is clear, that the calculatiothef partial derivative is es-
sentially done by doing a "normal” derivation with respexbine variable treating the
remaining variables as constants.

(2.3)

Example: Given the functionf (x,y) = X2y +y>. Findaf /ax andaf /ay
Solution

of of 2

i 2xy ay - X + 3y?

To indicate that a partial derivate is to be evaluated at qpdar point, for example
(X0, Yo) We write

ﬁ
0x

of

or —
0x

ﬂ( ) or
ox X0, Yo

X=X0,y=Yo (x0-Yo)
Example: f(x,y) = cogxy)+xcogy). Find the partial derivativedf /dx(xo,Yo) and

of /0y(xo,Yo)-
First we fixy = yp and differentiate with respect 1q giving

of d[cogxyp) + xco .
—(X0,Yo) = [cosxy) o) = —YoSin(XoYo) + cogyo)
0X dx X=¥o

Similary we next fixx = xg and differentiate with respect to y to obtain

% (0.30) = d[COS(XOY)d‘;XOCOS(y)]

— —XoSin(XoYo) — XoSiN(Yo)

X=X

15



Strange Example Given the functionf (x,y) = x/3y%/3. Find the partial derivate
of /oxat(0,0).
If we just do the differentiation with respect xove find
of 1 5313
x 30 Y
for the given point0,0) this function is not defined, in contrast to the result when we
start from the definition 2.3
of . f(h,0)— f(0,0)
i = lim ——~+~_ ‘&
ox (0,0 b h
Here we have the case that the functighs andy'/3 are themselfes not differentiable
at 0 but the multiplication of the functions has partial datives in this point. To
overcome this problem we have to construct something thatrisdimensional space
equivalent to the tangent line in one dimensional space.

=0

First we will focus our discussion on real valued functidng) c R? — R, InR3
a nonvertical plane for example is described by the follgr@guation

z=ax+hby+c

If it is to be the plane tangent to the graph of a functidgr,y) the slopes along the
andy-axes must be equal &f /0x anddf /dy. Thus we hava=0df /oxandb=0f/dy
both evaluated at a given poifxp, yo) and the constartwill be given by f (Xo, Yo), SO
we have

of of
z = f(xo,y0) + X—Xo) + = y—Yo (2.4)
( : ox ><o,yo( : dy ><o,yo( )

This is the equation of the plane tangent to the graph of thetfon f (x,y) at a given
point (xo,Yo0) if f(X,y) is "smooth enough”. The definition of differentiability Wil
mean in fact, that the plane given by the above equation i®adjapproximation of
the functionf (x,y) near a given pointxo,Yo). In the one dimensional case the differ-
entiability was written as

one can rewrite this like

_ _dfy
jim 10— 00)  df iy T T00) — (X %0)
X—Xo X—Xo dx X—Xg X—Xo
With the help of the above equations we are ready to defineifferahtiability for
functionsR? — R?

=0

Definition Let f : R? — R%, we sayf is differentiable a(xo, o) if df /ox andadf /dy
exist at(xo, yo) and if

i 100y~ F00.Y0) — 5 (o) — 5 (y—Yo)

0
L %y) — (0,Y0)] -

16



This equation expresses what we mean by saying that

of of
fWJ)%f@mw>+5yk—m>+5¢y—w>

is a "good approximation” to the functiof(x,y). So, if the functionf(x,y) is differ-
entiable at(xp,Yyo) one can construct the tangent plane at this point with the bkl
equation 2.4.

Example: Compute the plane tangent to the graph of the fundtiogy) = x4 y? + eV
at the point(1,0).
The partial derivatives anfi(xo, yo) at(1,0) are

f(xo,Yo) = 1+0+1 =2
So we find as equation for the tangent plane

z=2+2(x-1) + 1(y-0)

Now we are ready to extend the definition of differentiapitid real valued functions
defined on spaces with arbitrary dimension

Definition : Let f : U ¢ R" — R?, we sayf is differentiable aky if all partial deriva-
tivesof /0x.,0f /0X,...,0f /Oxn exist and if

of

X1

F(X) — F(%) — O - (X— %) - o
lim 0 with Of=| % called gradient of

%—%o |X— Xo :

ot

0Xn

A function whose partial derivatives exist and are contimiis said to be of clags?.
Any C?! function is differentiable. In the 2-dimensionale casedhadient is normaly

written as
of
- = of of
_ ax _
Of = ( it ) = Uxax +Dyay

ay
with Ty anddy being unit vectors in the x-, respectively in the y-direntidn the case
of a 3-dimensional cartesian coordinate system the gradfenfunction looks like

of

gx of of of

of

3 = UOy— + Oy— + U,— 2.

glf/ Ux ox Uyay Uz 0z (2:5)
0z

Normally the symbolic vector

Of =

. d d d
0 =ty + gy + Uy

is callednabla-operator. The form given above is its representation in a cartesian
coordinate system.
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2.4 Gradients and directional derivate

In forthcoming section we will discuss some special prapsrf the gradient opera-
tion. As one can see from equation 2.5 the gradient operastexjuivalent to a mapping
from R to R, We will start the discussion of the properties of the résglvector by
considering the following scalar function

fxy.2) = VX+y?+2 = ||

This function describes the distance from the origin in desaan coordinate system,
what is identical with the absolute value of the radius vent@ spherical coordinate
system. To calculate the gradient of the above defined fumetie start with the x-
component of the vector

2 2. 212
of  o(xX+y +7) _ }(x2+y2+22)‘1/22x _ X
0x 0x 2 /X242 1 22

hence we get for the total gradient

X -
Of = __t y | = T Ur
Veryiz\ 5 ) T
As we see from the above equation the gradient of the distamo¢ion is equal tal,
the unit vector in radius direction of the spherical cooaténsystem. It is interesting
to notice that the gradient of the functidris normal to its level surfacegx,y,z) = c.
Later on we will proof that this is a general property of thadjent.

Example: The static electric fielE is given by the negativ gradient of the poten-
tial function. Calculate the electric field using the potakfunction 2.1.
Itis sufficient to first evaluate the partial derivative wittepect to the x-coordinate

2 1 \2 -1/2
g_()f N o(x +ya;(f‘ Z) _ —}(x2+y2+22)*3/22x
Hence we get for the total electric field

X
E=-0p=— Q 1 -9 ! y
or with the help of the radius vector of the spherical cocatirsystem

. Q7 Q1

" e [P dmeo PP

Now we want to study a real valued functibnU c R3— R along a straight line with
directionty. A straight line may be defined by a constant vecgaand a parameter

F(t) = Fo + Gt
Using this vector we can calculate the functib(T) along the straigth lin€(t). In
this case the functiofi will only be dependent on the parameteand the directional
derivative in the direction of the unit vectady will be given by
df(fo+Tt)
dt t=0
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In a cartesian coordinate system we have

Xo Uy
Vo) Uy,

normally the functionf is given asf(x,y,z). So if we want to calculate the derivative
with respect to the parametgmwe have to use the chain rule
dfx)yt).2t) _ dfox , ofdy | ofoz _
dt = ot " oyet " ozat

of of of =
x U T ay Uy + 57U, = (Df) - Uy

Therefore we find that the derivative of a functibnn the direcetion of a unit vector
Uy is given by
- (ﬁ f) Oy

Example: Given f(x) = x?exp(—yz), compute the rate of change in the direction of
the unit vectoid, = (1,1,1)/+/3 atfp = (1,0,0)
For the gradient of the function we find

d f(Fo+ Tht)
dt

t=0

OpCexp(—yz)] = 2xexp(—y2)ix —xzzexp(—yz)tly—xzyexp(—yz)uz\(lﬁo’o) = 2y

hence we get

- 2
(Df) W=
We will now show that the gradient of a function points in thiedtion along whichf
is increasing the fastest. To do this we assume an arbitraryectord. Then the rate
of change off in directiont is given by

(if)-u - ’ﬁf’cos(e)

wheref is the angle betweemandClf. This becomes a maximum whén= 0, hence
the fastest incrase dfis in the direction oflf. In other words if one wishes to move
in a direction in whichf will increase most quickly one should proceed in the dimtti
of the gradient off. Similar if one wishes to move in a direction in whi¢tdecreases
fastest, one should proceed in the direction-aff.

If we consider a arbitrary scalar functidn: U ¢ R® — R? and if we consider a
pointrp = (Xo, Yo, 20) lying on a level surface defined Hyx,y, z) = c, then the gradient
of f atTo = (Xo,Y0,2) is normal to the level surface. This is clear if we think of atun
vectord lying in the level surface. The rate of change in a level sigfia zero, hence
we have

(if)-uzo ~ 0Of Ld
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Chapter 3

Vector-valued functions

One of our main concerns in chapter 2 was the study of realedafunctions. This
chapter deals with functions whose values are vectors. Westart our discussion
with paths, which are maps froRt! ontoR".

3.1 Paths

One often thinks of a curve as a line drawn on a piece of papeh as a straight
line, a circle, or a sine curve. To deal with such objectsatiffely it is convenient to
think of a curve inRR" as a set of values of a function which maps an interval fR'm
ontoR". If we formulate this for example for a path in 3-dimensiosece it looks like

X(t)
tefab — Ft) = ( y(t) )
Z(t)

If we think of the parametetr being the time, theifi(t) could be thougth of being a
vector pointing to a place in space where for example a massipanoving along the
path.

Definition: A path inR" is a mapr(t) : t € [a,b] — R". If F(t) is differentiable, we
say the mapping is a differentiable pathr is of classC?, we sayr is aC! path. The
pointsr(a) andr(b) are called the endpoints of the path.

Example: A straight liner(t) in RS thru a pointry = (X0,Y0,20) in the direction of

a vectow is given by:
F(t) = Fo+ Vit

Example: A circle in the xy-plane with radiupg is represented by
sin(¢) >
) = € [0, 2m 3.1
@ = po( ) ) eclon 3.
Example: A helix in 3-dimensional space is given by
I = pocogwt)Uy + posin(wt)dy + votd, (3.2

Usually particels that move in space do so on smooth cuna@®eXample particles do
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20

15

10

Figure 3.1: Path of a helix and a spiral

not usually disapper and spontaneously reapper at anatirgrqr change their veloc-
ity suddently. Thus we shall restrict our attention to sigfitly smoth paths, sa@!
for the rest of this section.

Definition: Let F(t) : R* — R® be aC! path. The velocity vecto¥(t) at a certain
pointr(t) is then given by

ax(t)
Toodt dr
dzt)
dt

and the total speed of the particlevis= |V|.
As an example we calculate the velocity of a particle movilum@ the helix given
by equation 3.2
dr —pPowsin(wt)
Vit) = = = Powcos wt)
dt
Vo

and for the total speed= |V|, we get

V= \/(pow)2c0§(oot) + (Pow)2sir? () + V3 = \/(pom)2 + V3 (3.3)

The following equations give differentiation rules for pasr(t) : R — R"

d . da db
d dA da
a(Aa) = amxa
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d _ = da db

d . - da do _. .
a(éxb) = aberéxa dbeR

3.2 Arclength

Consider a given patfit), we can think of it as the path of a particle. The particle
travels along that curve in space. What is the length of thisec ast ranges from
ato b. To calculate the length of the curve we think of the curve being subdivided
into infinitesimal small sectionds= |dr| and sum them up along the total curve. This
yields the following equation

s = /dsf /b d?|dt (3.4)

In the case of pathes R? or in R3 the above equation specializes to

7/| |dt/\/ )2 4 >)2dt
e [

Example: Calculate the arc length of the curve given by equation &b fe [0, 1
The vectordr/d¢ is given by

a ( ~sin() )

dp — "\ cogo)

hence we get for its absolute value

G5! = V/PBlsP8) + cos(@)] =

and for the arc length

*/| |d¢7/pod¢—npo

Example: Find the arc length of the helix defined by equation 3.2aad0, T].
We have already calculated the speed of a particle alongdlirersulting in equation
3.3, therefore we find for the arc length

T df’
/ |d 7/ \/ (Pow)2 + V3 dt = 1/ (pow)2 + V3T

3.2.1 Natural parametrization

So far we consider any arbitrary parametrization of a péthwith t € [a,b]. With the
help of equation 3.4 it is possible to define an arc-lengtletion s(t) on the path.

/|—|d tefab)
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Sos(t) defines a mapping from the intervél b] € R? of the parametdrto an intervall
[0,L] € R? of the parametes. If there exists the inverse mappib) we can define
the natural parametrisation of a path, for examplB¥n

To clearify the above consideration we examine the follgapath, which describes a
partical moving in the xy-plane on a circle with fixed radps

F(t) = po< (;?rf((oojtt)) > for te[0,T]

To evaluate the functios(t), we first have to evaluater/dt|

dr(t) pow( sin(oot)) . l?(t

_ ) _
dt cogwt) ot | = Pow

so we find for the arc length functic(t)

t
s(t) = / Powdt = powt
0

In this case it is easy to find the inverse functica s/(pow). We are now able to give
a natural parametrization of the path.

r(s) = po( Z?ns((;gg)) ) for se[O,L]

Definition: A C! parametrization of a paif{s) : R' — R" is a natural or path-length
parametrization if we have

dr
—| =1 drj = d
gl =1 or ldr] =ds
We give the following theorem without proof.
Theorem: For any smooth parametrizatién R* — R" of a path inR" there exists a
natural parametrization.
3.3 Differential geometry of a path
In this section we will consider pathes with a natural paraizegion in a 3-dimensional

space.
se[0,l] — F(s) eR®

First we will calcualte the tangent vector to the path

o ar
T —

(s) = ds
for the length of the tangent vector we find
S ar ds
T = || = == =
TOl =g = 5%
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This shows that the tangent vector of a natural parametpa#dis a unit vector and we
haveT (s)- T(s) = 1. If we differentiate this expression with respect to theapzeters

we find

d - - B dar(s) =, .
GTO T =0 = =T =0

If these two vectors do exist they are orthogonal to eachrothe

Definition: The non negative number

is called the curvature afs) in s.
Definition: If k(s) # 0 then a unit vectoN(s) such that

dT(s)
ds

= K(3N(9)
is called the principal normal t&y(s).
Definition: The vectorB(s) = T(s) x N(s) is called the binormal unit vector.

If we differentiateB with respect tes we find

2z

d_|§ d

TxN) =T
0s (TxN) X

ole
o
(7]

SinceB is a unit vector‘ﬂ,—f is normal to the vectoB, that is‘ﬂ,—f is lying in the plane
spanned by the vectolsandT. Since the vectof x 9% is normal toT we have
dB _
— = —T(S)N(s
i = TN

The number(s) is called the torsion of(s).

3.4 Arbitrary orthogonal coordinates

3.4.1 Cylindrical coordinates

The standard way to represent a point in a plRRés with the help of cartesian coor-
dinates. However cartesian coordinates are not alwayssuéiable for example if one
wants to describe a circle polar coordinates are more apiptepAs shown in Figure
3.2 an arbitrary poinfx,y) in the plane may also be represented by the raplausd the
angle¢ of the point(x,y). So we have the following relations between the coordinates

X = pcog¢) y = psin(9)

We can use the polar coordinates as basis to introduce dgithdtoordinates and to
represent a arbitrary poii,y, ) in RS,
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psin(d) 4 — — — — — — — — 5

Figure 3.2: Definition of polar coordinates

Definition: The cartesian coordinates of a point given by its cylirgricoordinate
values(p, ¢,z) may be calculated by:

X = pcogd) y = psin(g) z=z (3.5)
The values of the variablép, ¢, z) of the cylindrical coordinate system are restricted

Figure 3.3: Definition of cylindrical coordinates
to the following domains
0<p<o 0<HP<2M —0<Z<®

If only one of the variables is changed one gets the so catbeddinate lines of this
variable. Figure 3.4 shows a poipg, ¢o,2 in 3-dimensional coordinate system and
around this point th@-, ¢- andz-coordinate lines are drawn which are given by the
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5 p line

1 : z line

-5 -5

Figure 3.4: Coordinate lines of the cylindric coordinatsteyn

following equations

(Po+Ap)cog(d)
F(Ap) = (po+Ap)sin(¢) p-coordinate line

2

(Po) cos(¢ +Ad)
F(Ad) = (po)sin(¢p + Ad) ¢-coordinate line (3.6)

7
pocos¢)
Posin(d) z-coordinate line

n+Az

r(Az) =

In the subsequent section we will discuss the unit vectotBetylindrical coordinate
system. We will start our discussion with the z-coordinate B.6. The tangent vetor
to this line is given by

drz  d [ Peost®) 0
——~ = —| psing) | = O
dz dz ( 5 1

The unit vector has the same direction in each point of therBdsional space. Now
we will calculate the unit vector in the-direction. The tangent vector to the
coordinate lines is given by

dr(p) d [ Pcodd) cog¢)
——= = — | psin(¢ = sin(¢)
dp dp ( z( ) 0
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Since we have c8¢b) +sin?(¢) = 1 the tangent vector has already a unit length, hence
we already found the unit vectdp, of the cylinder coordinate system

( cog¢) )
Up = [ sin(¢p) | = txcogd) + Uysin(d) (3.7)
0

In contrast to the unit vectat, the unit vectorti, changes its direction depending on
the point one considers in the xy-plane as illustrated iuFed.5. In a last step we
will now construct the unit vector in thie-direction. Its tangent vector is calculated by

ne) d [ PCodo) —psin(¢)
—= = —| psin(p) | = | pcogd)
do dé ( z 0

In contrast to the already mentioned tangent vector its riemot constant

3 T T T T T

~ e
2]
S of =— — =
L

= T~

-3 ! ! ! ! !

X—axis

Figure 3.5: Unit vectors of the cylinder coordinate system

S = oesirt @)+ pRoo2 (@) — o

hence the unit vectaly is given by

L [ —Psin(®) ~sin(9) |
= 5| peos) | = | cote) | — —tin®) + Boos)

(3.8)

B

Uy =

o
=

Q|
B2
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This vector is also shown in Figure 3.5 at different pointshaf p$-plane. If we
compare the unit vectord, andy with the unit vectordiy andy of the cartesian
coordinate system we find that the unit vectors of the cyloadrcoordinate system
change their direction depending on the point we considshan in Figure 3.5.

3.4.2 Spherical coordinates

Beside cylindrical coordinates, spherical coordninatesadten used in technical ap-
plications. Especialy in the case of spherical symmetry ¢hg radia from a point
source they can be applied with benefit. In Figure 3.6 theetlreanties are defined
that are used to discribe a point in 3-dimensional spacesd aee the distati| of the

4 .

Figure 3.6: Definition of spherical coordinates

point from the origin, the angl® between the z-axes and the vedt@nd the angle
between the x-axes and the projectiorr @hto the xy-plane. With the help of Figure
3.6 one can easily define the mapping from spherical to canesordinates.

Definition: The cartesian coordinates of a point given by its spheviakles(r,3,¢)
may be calculated by:

x = rsin(@)coq¢) y = rsin(d)sin(¢) z = rcogd)
where the parametér,d,$) are out of the following domains
0<r<ew 0<39<m 0<¢$<2n

To study the unit vectors of this coordinate system we haweatoulate the tangent
vectors to the different coordinate lines. The vector to @nittary point given by its
spherical coordinate valués 3, ¢) reads

rsin(d)cog¢)
r(r,3,¢) = ( rsin(d)sin(¢) ) (3.9)
rcog?d)
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while Figure 3.7 shows coordinate lines around a give peihen the values of, 9
and¢ are changed. To calculate the tangent vectortacaordinate line we consider

Figure 3.7: Coordinate lines of the spherical coordinasgtesy

9 and¢ to be constant and we differentiate equation 3.9 with redpec
dr sin(9)cog¢)
ar = sin(9) sin(¢)
r cogd)

For the length of this vector we find

|g| — \/SI(9)[cof (@) +Sirf(9)] + coR(9) = 1

so that the tangent vector is already a unit vector and we ldeeta define the unit
vectord; of the spherical coordinate system

sin(9)cogd)
( sin(d)sin(¢) ) = Uxsin(9)cog¢) + Uysin(d)sin(¢) + U;cog9) (3.10)
cogd)

Ur:

In the next step we calculate the tangent vectordeaordinate line. That means that
we have to differentiate equation 3.9 with respedito

dr rcogd)coq¢)
a5 = rcogd)sin(¢)
—rsin(d)

for the norm of this vector we get

|3_g = \/r200§(3)[00§(¢)+sin2(¢)]+rzsin2(3) —r
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Now we are ready to define the unit vectiyrin 9-dircetion

dr cogd)coq o)
y = 2 = ( cogd)sin(¢) ) = Uycogd)cosd) + Uycogd)sin(p) — U,sin(d)
|35 —sin(9)

To get the tangent vectors to thhecoordinate lines we differentiate equation 3.9 with

respect tap
dr —rsin(d)sin(¢)
— = rsin(d)cog¢)
a ()

and for its norm we get

a /o : o
5 = \/r2Sir2(9) [sir(9) + co(9)] = rsin(d)
Hence we get for the unit vector gndirection

8=

d¢

which is identical with the unit vectaiy of the cylindrical coordinate system, already
defined in equation 3.8.

—sin(¢)
Up = E: = ( cog(q)) ) = —Uxsin($) + Tysin($)

3.4.3 Orthogonal coordinates

We consider an arbitrary orthogonal coordinate systemhwisidefined by the follow-

ing mapping
X(ug, Uz, Ug)
(Ug,uz,u3) = T = | y(u,Up,U3)
Z(Ul, uz, U3)
The tangent vectdF, to the coordinate lineis then given by
X
N ara an
T = - = %
aui BLQ
ou;
Of course this tangent vector will normaly not have a unigtbnso we have to define
the unit vector to the coordinate line afby

=

Ti 1or

U =—==_—-=— with h =T
" hidu = [Tl
With the help of the last equation we find
dr
- Gi (U1, Uz, uz)hi (ug, Up, U3)
Hence we find for the total differential of the incrementalvedement
or or or
ar = —d —d —dug = hylizd hatizd hstisd
6u1ul+auzu2+OU3uS 1U10U + hat2dWe + NaUsdug

The valuesh; that give by a multiplication withdy, the metrical length in the 3-
dimensional space are callatetrical factors .
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3.4.4 Nabla operator of an arbitrary orthogonal coordinatesystem

If we consider a real valued function in an arbitrary orthiglacoordinate system this
reads

@ = @(ug,uz,u3)
For the total differential of this function we find

do = %dul a(de2 + a(de3
aul
or with the help of the metrical factors

09 09 09
do = hiou 1h1dU1+ hoots ——hpdwp + hedUs ——hzdug
This may be expressed by the dot product of the gradient ditetion and the in-
cremental way elemenlf since the unit vectorg of the coordinate system are mutual
orthogonal

B ) ) )
do = <Ul hrous + Uo hadUs + Us h30U3) (Uih1dug + Uz2hoduw, + Ushzdug)

Hence the nabla operator of an arbitrary orthogonal coatdigystem reads

- 0 0 0
O=(d U U
< lhlaul + thaUZ + 3h36u3>

Example Nabla operator of the cylindric coordinate system
The cylindric coordinate system is defined by equation 3.®2ndé¢ we find for the
metrical factors;

hy =[5 =1
h2:|%|:p
he = %] = 1

thus the nabla operator of the cylindric coordinate systegiven by

- 0 o] 0
0= (Up=— +Up—= + Uz=—
( Pop " pap 262)
Example Nabla operator of the spherical coordinate system

The sperical coordinate system is defined by equation 3.Acélee find for the met-
rical factorsh;

=13 =1
= I&l =
= |&| = rsin(9)
Hence we find for the nabla operator of the spherical cooteisygstem

0 0 0
(U“ar o5 + o ®rsin(® )6¢)
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3.5 Surfaces

We already used one kind of a surface, namely the graph oflavakged function
defined on a plane

graphf = {xy, f(x,y) e R®}xyeU C R?%}

But there exist surfaces that can not be graphs of a funcit@e $n this case for each
elementx,y € R? there must be only omwith (x,y,z) € S. Instead we will consider a
surface to be a mapping from a 2-dimensional spaces into-thie&nsional space

(uv) € R? — S(u,v) e R®

Definition A parametrized surface is a functi& D ¢ R? — R3, whereD is some
domain inR?. The surfac&is the image of the mapped domain

x(u,V)
(uv)eDCR? = Suyv) = ( y(u,v) )

Z(u,v)

If Sis differentiable or is of clas€, which is the same as saying thdt, v), y(u, V)

| — 2/
N —

Figure 3.8: Surface of a cylinder

andz(u,v) are differentiable o€ functions of(u,v), we callSa differentiable or &1
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surface.

Example Surface of a cylinder
We will consider the following mapping

pcogu)
{0<u<2mO0<v<h} — S= ( psin(u) ) (3.11)
\'

Figure 3.8 shows the result of the mapping in a 3-dimensico@idinate system, while
the following lines give the MATLAB-code to produce this pice

cl ear;

rho = 3;

[U V] = neshgrid(0:pi/10:2*pi, 0:0.1:2);
X = rho. *cos(U);

Y = rho.*sin(VU);

Z =V,

surf (XY, 2);

axi s square;

Example Surface of a torus

Figure 3.9: Surface of a torus

As a second example will consider a mapping, that is onlyrgineMATLAB notation
and which produces the picture shown in Figure 3.9

cl ear;
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rho = 0;

3.0;
[U V] = neshgrid(0: pi/20:pi,0:pi/10:2*pi);
X = (rho + cos(V)).*cos(U);
Y = (rho + cos(V)).*sin(U;
4 = sin(V);
surf(X Y, 2)

3.5.1 Tangent vectors to the surface

If for example we fix one of the two coordinate®r v we get a coordinate line on the
surface. We can of course calculate the tangent vectordathive on the surfaces for
example in a given poinip, Vo

. ox(u,Vv) . ox(u,Vv)

IS o IS ay

B geoo = | ) R Tl - | 25
6U (Uo,Vo) 6\/ (UO’VO)

Definition: We say that the surfackis smooth aS(u, v) if the two tangent vector,
andTy exist and ifT, x Ty # 0. That means a normal vector to the surface at the point
(u,v) can be defined by

LS _ Tux T,
N = Ty xT, orasunitvector Uy = ———
[Ty x Ty

3.5.2 Area of a surfaces

To calculate the total area of a surface we first consideryasmaall area in the defini-
tion domain near the poirfti, v) which has the extentiordu anddvand how this area
is mapped onto the surface in the 3-dimensional space. Tocess is illustrated in
Figure 3.10. The small parallelogradé shown on the surface may be calculated with

yA

Tv

v+dv Tu

u'  u<#+du
o u

Figure 3.10: Mapping of a domain element
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the help of the tangent vectofg and T, to the coordinate lines in the mapped point
S(u,v). For the length of each sidks, anddS, we have

dS = [Ty/du  dS = |T|dv
and hence the value of the small atsis given by
dA = dSdS;sin(dy) = |Tux Ty|dudv

where the last expression reflects the fact that the crostugtof two vectors is pro-
portional to the sine of the anglg,, between them. With the help of this considerations
we are now able to define how to calculate the total area ofanpetrized surface.

Definition: We consider a parametrized surfaée (u,v) € D ¢ R2 — R? then the
total areaA of the surface may be calculated by

A= // |Tu x Ty|dudv
D

If the total surface is a union of smaller surfaces its aremigal to the sum of these.

Example: Compute the surface of a cylinder given by the mapping 3.11.
For the tangent vectoi& andT, we find

e (s s [0
Tu:%: (cogu) = puy T\,:a/: 0 =0

Hence we have to solve the following integration

2n rh 21 h
A= / / plty x Ujdudy = p/ du/ dv = 2mph
0 0 0 0

and end up with a well known result.
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Chapter 4

Integrals over Paths and
Surfaces

4.1 The path integral

This section introduces the concept of the path integra,ishone of several ways in
which integrals of functions of one variable can be geneedlito functions of several
variables. We will first define a path integral over a real edlfunction.

Definition: The path integral, or the integral df(x,y,z) along the pathd is de-
fined whend : t € [a,b] — R® is of classC! and when the composite function—
f(x(1),y(t),z(t)) is continous ora, b]. We define the path integral by

do

b
[ rds =[xy, 200) G 1t

Sometimed; fdsis also written as
/f(x,y,z)ds or /f(c?)ds
S S

Example: Let @ be a helix defined by € [0,21] — &(t) = (cogt),sin(t),t) and let
f(x,y,2) bex?+y?+ 72, Evaluate the integrdl, f(x,y,z)ds
For the tangent vector and its absolute value we get

- —sin(t -
Z—?: ( coi('g))) — |((jj—c: =2
and the result for the composite function reads
f(X(t),y(t),z(t)) = co(t)+sir(t) +t2 = 14t2
Hence we have to solve the following integral
t3 v2zn

/sf(x,y,z)ds = /(;2n(1+t2)\/§dt = \/§[t+§]%" = T[3+4n2]

The path integral over a real valued function does not deperttie orientation of the
curve, since the orientation of the path is lost during thaeation the infinitesimal
way elementsby |dd/dt|dt.
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4.1.1 Potential function of charge distribution along a filanent

Suppose a curvi(s) is given in natural parametrization. Along this filament a&on
dimensional charge distribution(s) = dQ/dsis defined. How to calculate the poten-
tial function of this charge distribution at a given poif? For purpose of illustration
Figure 4.1 shows the considered configuration. The influehttee chargel Q located

F’

0

Figure 4.1: Potential function of an charge distributionag a filament

at the source poirty(s) onto the pointy, is given by
1 dQ
411}:0 r

wherer denotes the absolute value of the vecater ', —4(s). Considering the func-
tion of the charge distribution(s) we find for the total potential functiopin the point

Tp
1 1 As)ds
Py) = /
MRy AR e
Example: Given a constant charge distributidg on a circle with radiugpg in the
xy-plane. Calculate the potential function along the zsaxe

The easiest way to describe a circle in the xy-plane is to ykedeical coordinates.
Hence we get for the vectorg andr,

The distance between the source pdgand the point, the potential function has to

be evaluated reads
r=[fp—Tgl = \/Z+p?

To describe the circle we have to variate the arfyleetween 0 and 2 while the
incremental way elemeits equalspodd. To calculate the potential function along the
z-axes we have to solve the following integral

o) / 2T NoPo 1 2mpodo 1 2mpoho 1
4Tl‘fZO «/22+p 4"1“:0 22+p% 4mep Po - <£>2
Po
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In the last equation the ternm@pA is equal to the total chard@ distributed along the
circle. So the first two terms represent the potemiiad charge induces at a distance

Po.

4.1.2 Static electric field of a charge distribution along a fament

As in the last section we suppose a filament is defined by affaésh with natural
parametrization. On the path a one dimensional chargeibiigiim A(s) = dQ/ds
is defined. How to calculate the static electric field in a giymintr,? We start
by considering an infinitesimal small chard® located at a source poiri(s) using
the notation of Figure 4.1. According to Coulombs law [5] &ctor formulation this
charge will contribute the following infinitesimal eleatfield dE to the total field

17

To get the total electric field in the considered pdintve have to sum up all contribu-
tions of the charges along the filament. This leads to theviatig integral

(Fo) = — /@A(s)ds L[ o=l ) (gds

T 4meg Jsr3(s) T 4T Js [Tp—Tq(9)

m

4.1.3 The line integral

In the last section the orientation of the curve did not dbnte to the result of the
integration. That is not the case for the line integral wd ddfine now. Consider a
small chargeg is moved along an orientated paihin an arbitrary static electric field
as illustrated in Figure 4.2. In each point of the path theghavill experience a force

—

O(a

Figure 4.2: Moving a small charge in a static electric field

F = gE(s) depending on the electric field at that point. If we move thargh an

38



infinitesimal small wayld along the path a wor8W will have to be done, that is equal
to the dot product between the foreeand the way element, so we have

dW = F(s)-d6 = gE(s)-do

To get the total work we have to sum up all contributions althmg orientated path
0(s), which leads to the following integrals

W = /If(s)-dé - q/E(s)-da
S S
Now we are ready to formulate the definition of the line intdgr

Definition: Let F be a vector field defined oR® which is continuous on th€?! path
G : [a,b] — R3. We define[,F - dg, the line integral ofF along the patt8, by the
following formula

— b—» 8)
/F-d6:/ EG(t) Dat
s a dt

This line integral is independent of the chosen way as lonth@asector field is con-
servative, i.e. as long d&sis given by the gradient of a real-valued function.
Example: Consider a homogenous static electric fielg: Eqty and two pathes in the
xy-plane. One path along the x-axis from the origirxte 2p and the another along a
half circle lying in forth quadrant, starting in the origindiending at the point= 2p
also. Calculate the line integrdlEda along the two different paths.

We start our calculation by giving a parametrisation of th&t fiath

te[0,2p] — B(t) = Tyt

so we have"jj—‘;’ = Uy and we have to solve the following integration

20 "2p
/ E.dg — / Eqtly- Uedt = Eo2p
0 0
Two parametrize the second path, we use the following mappin
t€[0,1] — O(t) = plx— puxcogt) — plysin(t)
For the differential way elemeni we find
do = p|sin(t)ty — cogt)ty] dt
so we have to solve the following integration
. m Tl
/Ed6 = / Eoly - p[sin(t)Ux — cogt)ay] dt = / Eopsin(t)dt = Eo2p
s 0 0
Thus we see, that we get the same result independent of thevpatsed to do the line
integration. We will see later on that this is true for ariyr paths between to different

points in a static electric field, since a static electriadfiedn allways be described as
gradient of the potential function.
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0 Tq(s) |

Figure 4.3: Static magnetic field

4.1.4 Static magnetic field due to a current filament

In section 4.1.2 we have already discussed an integratmrga path which gave a
vector as result. The same holds true for the law of Biot ancdhi$&?, which tells

us how to calculate the static magnetic field due to a curalving in an arbitrary
shaped wire. The geometry and direction of the flowing curiemescribed by a
natural parametrized curvig(s) with its infinitesimal way elemendry. The point
where the static field is going to be calculated is denotethbgsulting in a difference
vectorT = p — Tq between the poirtt, and the source of the magnetic field. With these
definitions the law of Biot-Savart reads

~ | r | ry—T,
H(P) = — FyX = = — Fox —P 9
(Tp) 4n7€:dqxr3 4T[7{cdq>< Pp— T3

To illustrate how this formulare works we will consider thaléwing example.

Example: A currentl is flowing in a circle shaped wire in the xy-plane with its eant
at the origin. Calculate the static magnetic field along Hais.

To represent the points along the z-axes we define= zu, while the circle in the
plane may be described by the following mapping

¢ €10,21] — Fy(¢) = p[cogd)tx + sin(¢)Ty]
so we find for the infinitesimal way element along the pdith

dr, _ —sin() . -
d_(; = ( COE((I)) ) = pU¢ - df’q = pU¢d¢

For the vector we have

Before we can evaluate the integral we first examine the uastuct
drg x T = pddUy x (zz — plp) = P(zUp + plz)
hence we have to solve the following integration

~ I an A U
iz = Erp/o " ( /:212‘22)3 4

40



This integral may be splitted into two ones, in the first thét wactor U, has to be
integrated fromp = 0 to ¢ = 21, which gives zero as its result. In the second term
there is nop dependence, sor@will be its result. Hence this leads to the following
equation for the static magnetic field along the z-axis.

~ | 2
Ao = -—F2 4,

21 (\/m)

4.2 The surface integral

In section 3.5.2 we already discussed how to calculate e @fra parametrized sur-
face. Now we will go on and examine how to integrate a scalaction which is
defined on the surface.

4.2.1 Surface integral of a real valued function

Consider the following situation, given an arbitrary sudé(u,v). On this surface
we have a given charge distributiariu,v). What is the total charg® located on the
surface? To solve this problem we first consider an infinitesaread A of the surface
at a given pointu,v). This area will carry the charggQ = o(u,v)dA. The total
charge is the sum of this infinitesimal charges.

Q://Sch

To explicitly carry out this integration, we remember how /e calculated the area
of a parametrizesed surface. The following definition wélhto solve the problem.

Definition: If f is a real valued continous function defined®mve define the integral
of f over S to be

[ [ran— [ [ #(Suuit« Hidudy

Exmaple: We consider the following charge distribution

See L)

axy) = 00< (& 00

on a circular disc with radiugg. Calculate the total charge on the disc.
To describe the circular disc, we introduce the followinggmaetrization.

(p.9) € [(0,p0) (0,210)] ~ S(p.¢) = p< Z?ri(g)) )

So we get for the tangent vectors of fhand¢ coordinate lines

= dS _ (cog) ) _ . = _dS_ [ —sin@) ) _
T = dp ( sin(¢) ) o To = do P\ cotd) )~ P
and hence for the incremental area elemBhtve find

dA = (T, x Ty)dpdd = pU,dpdd — dA = pdpdd
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With the introduced mapping the functianx, y) becomes a function dp, §)

- pcosd) , . psin@d) L\ (p\"
o(p,¢>—oo<\/< oy (2 >2> —%(g)

In order to calculate the total charge of the disk we have tdopm the following

integration:
awrpo (p\" Po
= oo — ) pdpdd = 2mop—2-
Q /0/0 o<p0>pp¢ 0 o

For a constant charge distribution (n = 0) we get the knowalt€s= ﬂGop% from the
last equation.

4.2.2 Surface integral of a vector valued function

To give an example for this integration we have a look at Fegid. It shows the

Figure 4.4: Total current through an arbitrary area

field lines of a current density field(x,y,z) flowing through the shown area. How to
calculate the total current flowing through the surface. dfansider this problem we
must remember, that of course the flow lines are not alwaysgodicular to the surface
they pass. Considering a small ad#the net currend| through this area is given by

dl = J-dA = |J]|dA|cogd3a)

Here the dot product of the vectors assures that only the unetlfough the area is
counted. To calculate the total current we have to sum upaleat elementdl. This
leads us to the following definition.
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Definition: Let F be a vector field defined on the surfa@i,v). The surface inte-
gral of F overS(u,v) is defined by

[ JF-eA = [ [ FSuv)- (FuxTdudy

Example: Consider the static electric field of a charQdocated in the origin of a
coordinate system. Calculate the electric flux thru a cg@imalith heighth and radius
po surrounding symmetrical the charge.

We start our considerations by remembering the electrid fieand the electric dis-
placement field of the charge.

. Q1 . - Q1
E S D= ek = 750

ATEgr2
Now we will give a mapping that describes the cover of thenziéir
h h . pOCQE(q))
@.2)¢ (0.2ri-5.5) ~ $62 = | posin®)
z

On the cover of the cylinder the electric displacement vestgiven by

. 1
D= gz—zf‘r
dnpg+z

To calculatedA of the cylinder cover, we first have to calculate the tangestars to
the coordinate lines

. as —posin(d) . ds 0
Ty = @ ( pocgs(¢) =ply T= =|(0]=0
so we find for the incremental area elemeAtof the cylinder cover

dA = (Ty x T,)ddpdz = poli,dddz

Thus the integral over the cover reads

I 2 rh/2
B-dA = = / Tpdz
//c h/poJrz2 Ur - pdz

Before we can solve the above integrals we first have to eteatha dot product be-
tween the unit vectot, of the spherical and, of the cylindrical coordinate system.
Their representation in cartesian coordinates are giveqgumtion 3.10 and 3.7. So the
result of the dot product is

U - Up = sin(®) with sin(d) = ~ PO onthe cylinder cover

So the following integrals have to be solved
21'[ h/2
D-dA / ————dz
/ / h/2 (p2 +22 (024 7232
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As result we find hio
//D’.d,& = Q%
¢ (h/2)? + pj

To go on with our example we now have to consider the electricgbing thru the top
of the cylinder. A mapping describing this surface reads

B pcogd)
(P.9) € ([0,p0][0,21) — S(p.¢) = ( pshi?(ztb) )

The electric displacement vector on this surface is given by

. Q 1

P = anprr (22"

For the tangent vectors to the coordinate lines we find

[ cogd) ) —sin(¢)
T | Sn0) ) =g T—p| cose) | -

and therefore the incremental area element is givethby: pt,dpdd and we have to
solve the following integrals

gk QTP 4. ddod
//T A= 2 /o o7 (nj22 U Uzdpdd

Before one can solve the above integrals one again first leaddolate the dot product
of the unit vectors which gives the following result

U - U; = cogd) with cogd) = __2 on top of the cylinder

Vp*+(h/2)?

Doing the integration we end up with following result givittge electric flux thru the
top of the cylinder surface which for reason of symmetry isado the flux thru the
bottom of the cylinder

[[50i-2 llL]
T p5+ (h/2)2

To get the total electric flux thru the cylinder we have to aghdthe fluxes thru the
cover, the top and the bottom of the cylinder, which yields

//Sﬁ-dA://CB-dA+2//T6.dA:Q

So we proofed in this speazial case Gauss law, which staaeshid total electric flux
flowing out of a closed surface is equal to the charges entlose
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